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1. Introduction

The semi-classical strings has played an important role in studying AdS5/SY My correspon-
dence. In a remarkable paper [I], it was found that the fluctuations around the point-like
string captured the right string spectrum of BMN plane-wave background [B]. Moreover,
the study of the multi-spin string solutions reveals that even when the configuration is
far from BPS, the energy of the string solution with large angular momentum could be in
perfect agreement with the ones calculated in dual gauge theory. The agreement beyond
BPS limit relies on the fact that on string side the quantum corrections of strings was
suppressed by the large quantum number, while on the field theory side the dual field op-
erators to these string solutions are the composite operators, whose anomalous dimension
matrix (ADM) could be related to the Hamiltonian of integrable spin chain. Moreover this
agreement suggest that both sides of AdS,/SY M, correspondence are integrable. There
are lots of study on this topic. Please see [fJ] for a nice review and references.

Very recently, inspired by the study of Bagger-Lambert-Gustavson theory on N mem-
branes [[l]l-f], in [ Aharony et.al. proposed a A" = 6 Chern-Simons theory coupled with
bi-fundamental matter, describing N membrane on S”/Z;. In particular, it was pointed out
that in the limit with ¥ << N < k®, this theory is dual to IIA string theory in AdSy x CP3.
Many aspects of the BPS sector of this new AdS,/C FT3 correspondence have been studied
in [f. Quite recently, the near-BPS sector are also studied by using the Penrose limit of
this ITA string theory background [§—[(]. Other relevant work could be found in [[3]-[RF].
In particular, in [[1], ] it was pointed out there exist integrable spin-chain structure in the



field theory. It would be interesting to go beyond the near BPS sector and investigate the
semiclassical configurations and their implications in AdSy4/CFTj5 correspondence.

In this paper, we will study the semi-classical string solutions in AdS,; x C'P3. We will
mainly focus on the spinning solutions in CP3. We will calculate their energy and angular
momenta and compare with their field theory duals. This is possible due to the recent study
of 2-loop integrable structure in the field theory [, P]. Our solutions include a point-like
one which is BPS and corresponding to the ground states of the string theory in the IIA
plan wave background obtained by taking Penrose limit. We also study the circular and
folded string configurations. We find that some of our solutions are far from BPS, but still
has a field theory dual. For the circular string and folded string, we discuss the energy of
the corresponding operator from algebraic Bethe Ansatz equation(ABAE). The agreement
between string theory and field theory results could be perfect if an interpolating function
of coupling constant is introduced.

The paper will be organized as follows. In section 2, we will set up our system and have
a general discussion of the semi-classical solutions. In section 3, we will present several
kinds of spinning solutions. In section 4, we will discuss the field dual to some of these
spinnning string solutions. We will end with conclusion and discussion in section 5.

2. Action and equations of motion

The three-dimensional A" = 6 superconformal theory proposed by ABJM in [ff] is a Chern-
Simons theory with gauge group SU(N) x SU(N) with bifundamental superfields A;, Ay
and anti-bifundamental superfields By, Bo. The action has a pure Chern-Simons part:

k 2 3 2 3
Scg = E/ <A(1) VAN dA(l) + gA(l) — A(2) AN dA(2) — gA@)), (2.1)

and the superpotential

W = %Tr(AlBlAQBQ — AlBgAgBl). (2.2)
Note that the sign before the Chern-Simons terms are opposite and the superpotential has
actually an SU(2) x SU(2) global symmetry, which acting on the A’s and the B’s separately.
The level of the Chern-Simons theory for the two components of the gauge group are k
and —k, respectively. When k and N satisfy k << N < k°, this field theory is dual to
ITA superstring theory on AdSy x C'P? with constant dilaton, RR two-form and four-form
fluxes. The constant dilaton reads:

e?® = D12 NV/2=5/2, (2.3)

Since we are interested in semiclassical fundamental string solution in this background, the
RR fluxes play no roles here.



Let us start from the metric of AdS, x CP3,

1
ds? = ZR2(— cosh? pdt? + dp?® + sinh? p(d6? + sin® 0dp?)) + R?(d€? +
2 on 2 1 1 21 2 2 2 2
cos” Esin“ & dip + 5 cos O1dp1 — 5 cos Oadps | + 7 608 £(dO7 + sin” 61dp?) +

1
1 sin? £(df3 + sin? Oad3)). (2.4)
The radius R here is!
R = 2%/4g1/2\V/4 (2.5)

where A = N/k is the 't Hooft coupling constant of this three dimensional superconformal
theory. In the above metric, the C'P3 part is the standard Fubini-Study metric which could
be obtained in the following way. We first consider a unit S7

4
Sz =1, (2.6)
i=1
embedded in C*. Then we parameterize the complex coordinates Z;’s as follows:

0

7 = cosfcosglexp [z(y—i— @)} (2.7)
0 _

Zgzcosésinglexp [i<y+w 2('01)}, (2.8)
0 _

Z3 = sin€ cos 52 exp [z <y + w>] , (2.9)

Zy = sinfsin%exp [z(y—i— #)] (2.10)

Here 0 < ¢ < 5,0 <y <27, —27 <9 < 27 and (6;, ;) are coordinates of two 52’s. Now
the induced metric on S” can be written as a U(1) fiber over C'P3:

dsgr = dsgps + (dy + A)*. (2.11)

In this way, we get the metric on CP? as above (here A is a one-form).
For most of our solutions, we assume that ¢, ¢, %, @1, @2 are function of 7 only and
0, &, 01,05 are only the periodic functions of o. The bosonic part of the string Lagrangian is

1
LB = 5\/—gg“bGMN6aXM8bXN (2.12)
where Gy is the background metric above and g, is the worldsheet metric. We can

choose the conformal gauge, in which g,, = €”Diag(—1,1). Then we have the action:

A 1 0 1 1 .
S = £ dodr | = cosh? pi? + =p? + = sinh? p(#” — sin? §¢?) + £
47 4 4 4
o1 1 2
—cos? Esin® ¢ (1,!) + 3 cos b1 — 3 cos 9290'2) + 1 cos? 5(9'12 — sin? ngb%) +

1
1 sin® £(0% — sin® 92¢§)>. (2.13)

'We take o/ = 1.



The relation between \ and the 't Hooft coupling A is:
22 = 327202, (2.14)

From the metric, we know that the background has at least five Killing vectors cor-
responding to the translations along t, ¢,, ¢1,9s. The Killing vector along t gives the
conserved energy and the other four Killing vectors give the conserved angular momenta.
Let us make ansatz:

t=kT, ¢=vT, Y=wiT, Y1 =waT, P2 =wsT (2.15)

With this setup, we have the conserved quantities:

E = %cosh2 p\/i/-{ (2.16)
S = \/K/d—av sinh? psin? 0 (2.17)
\/_ cos 91 cos 09
Jp = cos Zesin? € w wp — — w3 (2.18)
2
Jo = \/_/ do [— cos §sm f1ws + cos fsm §<COS 2 wa + COS291 <w1 — 008202w3>>}
2
J3 = \/_/ do [— sin? € sin? fows + cos? € sin? £<COS 02 wsg — 008292 <w1 + 608291(@))}

The equations of motion for t, ¢, 1, v1, s are just the conservation of E, S, J;’s.
Now we turn to the equations of motion for p, 8, &, 61, 6>. The equations of motion are:

Z

= sinh p cosh pt? — sinh p cosh psin® #¢2 + sinh p cosh pd'?, (2.19)
O (1 o )\ _ Ll o
8_0<§ sinh p9> = —§¢ sinh” psin 6 cos 6, (2.20)

1 S
— cos 929272) + 5 cos ¢ sin € sin? ngb%

1 1
2¢" = ——sin4§<¢ + 5 cos 011 — 5

2
1 1 1
~3 sin & cos € sin? B3 — 3 sin € cos €07 + 3 sin € cos €07, (2.21)
9 (1 2 ¢nt 2. . 9. . 1 . 1 N .
— | zcos“E0] | = cos“Esin”Esinby | Y + - cosb1p1 — = cosbapa |1
do \ 2 2 2
1
~3 cos® € sin @) cos 012 (2.22)

1 <1 1
9 <— cos? §9§> = —cos? ¢sin? Esin by <¢ + 5 cos 0191 — 5 cos 92952) D9
o

1
~ 5 sin? € sin 6 cos faH3 (2.23)
The Virasoro constraint

GMN(80XM80XN + 81XM81XN) =0,
Gundo XM XN =0, (2.24)



gives

cosh? pr2 /4 = = (p? + sinh? p(0” + sin? 6¢?))

B~ =

2
cos 01wy — cos 92W3>

+&7 + cos® €sin® ¢ <w1 + 5

1 1
+ cos? £(0F + sin® 61w3) + 1 sin? £(0% + sin? fow3) (2.25)

3. Various semi-classical string solution

In this section, we would like to discuss the semi-classical string solutions in AdS, x CP3,
with emphasis on the spinning string solutions in C'P3. For the string solutions in AdSy,
the discussion is very similar to the case in AdSs. The only difference lies at the fact that
there is only one spin quantum number in AdS4 while there are two spins in AdS5. The
rotation string and pulsating string could be constructed easily.

For the semi-classical string in C'P3, the construction is different. In this case, p is
constant and t = k7, ,0, ¢ is constant, then the equation of motion for 6 is satisfied and
from the equation of motion for p, we get

cosh psinh pk = 0, (3.1)

which restricts p = 0.

Compared to the similar construction of multi-spin solutions in AdSs x S° [B{], the
construction of spinning solutions in AdSy x CP3 is more tricky and restrictive, whose
dual field operators are also not transparent. We manage to find the dual operators for
point-like string, a class of circular string and a class of folded string, by matching the
global charges.

3.1 Point-like solution

Consider the point-like solution in which there is no dependence on ¢.? Let ; = 65 = 0,
then the equations of motion for 6; and 5 are satisfied. And from the equation of motion
for &, we get

, 1 1 \?
sin4é | wy + 5&)2 — 5(4)3 =0 (3.2)

So for generic w;’s, £ can only take 7/4. The Virasoro constraints give

1 Wy — w3\ 2
2 _ 1+ 2 3
K/4 = 4<w1+72 > (3.3)

Then we get
E=J=2Jy=-2J3 (3.4)

2 After we finished our paper, a preprint [@] by Gromov and Vieria appears in arXiv. The discussions
about point like strings there has some overlap with our discussions here.



Recall that J;’s is the quantum number corresponding to the Killing vector

.0

Jl = —Z% (35)
.0 .0

JQ = _Za—gpl7 J3 = _28—902' (36)

The essential fact is that following [§], we can identify X1, Xo, X3, X4 in (2.7)-(R.10) as the
scalar fields A1, As, By, By. Then we can write down the charges of the scalar fields as

Ji(A1) = Ji(As) = Ji(B1) = Ji(Bs) = 1/2
Jo(A) = —Ja(As) = 1/2, Jo(B1) = Jo(Bs) =0 (3.8)
J5(Ay) = J5(As) =0, Js(B1) = —Js(Ba) = —1/2  (3.9)

Then the chiral operator Tr(A;B1)” has J; = J, Jo = J/2, J3 = —J/2, E = J, in perfect
match with the relation (B.4). In fact, as the case studied in [, the point-like solution
is dual to the chiral primary operators, which is BPS and can be identified as the ground
state of the IIA string in the plane-wave background. The identification of Tr(A;B;)” as
the ground state has also been pointed out in [§]. Similar to the IIB string in AdSs x S5, it
could be expected that the fluctuations around this point-like solution is actually the ITA
string spectrum in the plane-wave background [, g, f].

3.2 Folded string I

Let us try the following ansatz: 6, = 65 = 0, then we have
1
¢ = —sin 4€0° (3.10)

where @ = w; + (w2 — w3)/2. The Virasoro constraint is now

2

Z:£/2+

X

sin?2¢ _,
—_—Ww .

1 (3.11)

Since we consider the folded string here, ¢ will take its maximal value at some . When

2

€ =&, we have ¢ = 0 and so k% = sin? 26y@?. Then we get

@2

¢? = Z(sm2 260 — sin? 2¢), (3.12)
which leads to :
0 2d
2r =4 / 3 . (3.13)
0 @(y/sin? 2, — sin® 2¢)
The angular momenta in this case is just
- [d
Ji = \/X/ 2—0 cos? € sin? €0 (3.14)
T
J
Jy = 71 (3.15)
Jz = —Jo (3.16)



The eqgs. (B.13) and (B.14) give us

o= %K(q), (3.17)
Ji = Z—\CTX(K(q) - E(9)), (3.18)

where ¢ = sin® 2¢y and E(q), K(q) are the elliptic integrals of first kind and second kind,
respectively. The energy F is
A A A
E= %x - gw sin 26y = \2£ sin 26K (q). (3.19)
i

This string configuration is a folded string. The relation between different angular momenta
suggest that the solution has only one angular momentum. It is reminiscent of the folded
string solution spinning in S° discussed in [fl]. It is interesting to consider the large J

limit, which corresponds to { — 7/4. In this limit, one has F — oo, J; — oo and

E—J ~ 2—75‘ This looks similar to the relation in the giant magnon case with p = 1 in [{],
but actually folded string solution is very different from the semiclassical string of giant

magnon explicitly constructed in [I0, P9

3.3 Circular strings

In this subsection, we will fix £ = &y being a constant. First let us further assume that
wg = 0, #; = 0, the equation of motion for #; is satisfied. From the equation of motion for
05 we have

05 =0, (3.20)
so 0o = no, (we choose n # 0). The equation of motion for & gives:

2

n
cos2fp)y = ———"-—=. 3.21
S0 (2w1 + wo)? (3:21)
For this solution, we have:
= 1
J = \/Xcos2 o sin® & <w1 + §w2> =2Jy,J3 =0, (3.22)
and -
2 _ J? Asin? €gn? (3.23)
4sin? &y cos? & 16 )

This is a string solution with one independent angular momentum. For n = 0, we just
come back to the point-like solution discussed before.
We can also make ansatz that wy = wg = 0, then the equations of motion for 6,65
give
07 =05 =0, (3.24)
which gives 0; = n;o. If we choose n; and no to be nonzero, then Jo = J3 = 0, The
equation of motion for £ gives:

2 _ .2
cos 2§y = n14w2n2 (3.25)
i



The relation between E and .J; is

2
2 Ji

= 2 2 -2 2
= IenTepco2 gy T 16\CO% foni Fsin"omy). (3.26)

LA
16

This solution is a circular string with one angular momentum. Especially if we choose
ny = £ngy, we have {y = 7/4 and

/ An? An?
E = J2+—1:J1<1—|— L +> (3.27)
116 32J2

In this case, the circular string has a field theory dual. Let us consider the composite
operator in field theory Tr((A1B1)7(A2B2)”). It has J; = 2J, J, = J3 = 0 and at the
classical level, £ = 2J. This is in consistent with the relations that the circular string

respect to. We will study this operator in the next section.

3.4 Folded string II

The study of the circular string solutions suggest that one may have to fix £ = 7/4 in order
to find their field theory dual operator chains. In this case, from the equation of motion
for &, it is quite natural to require 7 = £65. Actually, this is the only possible way to
have nontrivial solution. Then from the equations for 6; and 2, we find that this is only
possible for wo = —ws3 and

{ = sin 0wy ws. (3.28)

This equation is in consistency with the Virasoro constraint, which has
K2 =072 + Wl + w3 + 2w ws cos by. (3.29)

Let us first consider two special case. When we take ws = 0, this reduce to the circular
string we studied before.
However, the case with wq = 0 is also interesting. In this case, we have

\/i 2 2

J=0,Jp =—J3= ?OJQ,K/ =wy + 7”L2 (3.30)

This is another circular string solution, quite similar to the first one, but the field theory
dual is very different. To respect the relation between quantum numbers, we are led to
considering the following operators: Tr(A;B;)”2/ 2(B;A;)J2/ 2. The energy of string in the
large Jo limit is R

n\

EF=2Jy+—r +---. 3.31
2+64J2+ ( )

Classically the dual operator has dimension A = 2.5, in consistent with the zero order
string energy. It should be keep in mind that the first order correction in the string energy
is of order \/JZ, similar to the circular string we discussed before.

In general, the solution is a folded string configuration. Since 6, is periodic of o, so

we have
—61(0) < 61(0) < 61(0), K = W? + w3 + 2wiws cos 01 (0). (3.32)



If wiwg > 0, @ is varying around w. On the contrary, if wiwy < 0, the folded string is
centered at #; = 0. Without losing generality, we will assume w; > 0,wy < 0 such that
wiws < 0. Then, we have

o = / " do = / " d91 . (3.33)
0 \/TM \/ sin® 91 — sin? %1
This gives us
N %mgg), (3.34)

2 01(0)
2

The energy of the folded string solution is just £ = %\/iﬁ. The angular momenta are

J = \/_/—— w1 + cos O1ws)

where x = sin

— m (w1 — we)K(x) 4+ 2we E(x)) , (3.35)
61(0) 01)do
R v / (£ wn cos f1)dbn (3.36)
Ty —W1w2 \/sz 0100) _ 2 971
VA
= —w))K 2w E .
e (@2 = @)K (@) + 21 E(z). (3.37)
Js = —Js. (3.38)
We have the following relation
A
%Jl — oy = ?\/_(w% —wd) (3.39)
In the case that wy = —ws, we have J; = —2.J5.
It is convenient to introduce the following quantities:
E E
=", J=-—=, i=1.23. (3.40)
VA VA
In terms of these quantities, we have
K(x)J1 — 2J02(2E(z) — K(x))
w1 = K(x) (3.41)
E(z)(K(x) — E(z))
2K (2)J2 — h(2E(z) — K(x))
we = K(x) , (3.42)
E(z)(K(x) — E(z))
and the following key relations
N (n+2R\ 4
Y et Ll 4
(7m) - (%) == 349
T =25 \° (SH+25\°_ 4 (3.44)
E(z) — K(z) E(z) w2 '



We will show that in the next section, due to the above relation the folded string could be
in perfect match with the dual field theory operators up to an interpolating function.

The dual operators in the field theory is somehow subtle. To match the above angular
momenta, we propose the following identification:

EEy EIy
Tr((A1By) 2 T72(AyBg) 2 ~72), for wy +wy >0 (3.45)
Tr((BIAI)_(JTl"'J?)(Ang)%_h), for w1 + w2 <0 .
However, if we take w; = —ws, then the above operators reduce to Tr(Ang)J 1 which is a

BPS primary and has A = J; without quantum correction. But from the string calculation
we know that there do exist higher order corrections.

3.5 Pulsating string

Before ending this section, let us discuss pulsating string, another kind of semi-classical
string solution. The pulsating string purely in AdSy is quite similar to the one in AdS; [27].
So we focus on the circular pulsating string expanding and contracting on CP3. To simplify
the discussion, we let 0, ¢, 01,65, 1,2 be fixed to zero, t = k7,9 = no and p, & be the
function of 7. Then the Green-Schwarz action is

S = 4—\/75 /dad7‘<%2 cosh? p — iﬁ — €2 4 cos? ¢ sin? §n2> (3.46)

which leads to the equations of motion
p = —k?sinh pcosh p (3.47)
= —%nQ sin 4¢ (3.48)

On the other hand, the Virasoro constraint is now
1 .
Z(—/-iz cosh? p + p?) + €2 + cos? Esin? €n? = 0 (3.49)

To be consistent with the equations of motion, we notice that p has to be vanishing. So
we fix p = 0. Then we have only one equation to solve. Let n = 2¢, we have

i +sin?gn? — k% = 0 (3.50)
or
n2
i = —5 sin 2n. (3.51)

This looks nice a one-dimensional pendulum. From eq. (B.5(), we know that when 7 take
the maximal value, 19, 7 = 0. Then x? = n?sin®7y. So

i* = n?(sin? ny — sin?n). (3.52)
If the period of this pendulum is 7" (this is measure by the worldsheet time 7), we have,
roaf” il . (3.53)
0 ny/sin?ny —sin?p
When 7 € [0, §], we have
— i (3.54)

0 ny/sin®ny —sin’® 7

— 10 —



4. Field theory dual operators

The integrable spin chain in ABJM theory has been discussed in [(1], fl]. It was pointed
out in [[L1], at two-loop order, the anomalous dimension matrix (ADM) of the composite
operators constructed from the scalar fields could be identified with an integrable Hamil-
tonian of an SU(4) spin chain. Including the fermions in the operators, the spin chain is
extended to SU(2|2) in [ff]. More precisely, following the notation in [[[J] let us consider
the following gauge invariant operators of the form

Te(YAYL vAv) - v ARy ), (4.1)

where
YA = (A17A27BI7B§)7 YYAJr = (ALA;BLBQ)' (42)

In general, the leading order ADM of this class of composite operators can be identified with
the Hamiltonian of an SU(4) spin chain with sites alternating between the fundamental
and anti-fundamental representations. We will not review the relevant discussions here.
There are three sets of Bethe roots, satisfying the coupled Bethe equations.

Let us consider SU(2) x SU(2) subsector of the SU(4) spin chain, in which Y4 take
only Ay, As and YAJr take only Bi, Bys. Obviously the operator dual to the circular string
and the folded string (wq +w2 > 0 case) belong to this subsector. In this case, we have two
decoupled SU(2) chains. The middle Bethe roots r; in [L1l] will not appear in this case.
And the Bethe equations are:

<M>L: ﬁ u; — ug + i (4.3)

uj —1/2 bt g U Uk
- L M7J .
(2m) = 11 vt (4.4
vj — i/ fThy VT Uk
The trace condition is
M+ 1/2 3 v 4+ 1/2
1= J J : (4.5)
EUj—l/2j1;[11)j—l/2
The energy is
My My
E =\ +) . (4.6)
2 1 2, 1
SWtT OviTa
Here we have L = 2J and M,, = M, = L/2.
One choice to satisfy the trace condition is to satisfy
M
T u; +1/2
) R (4.7)
];Il Uj — 1/2
and u
T v; +1/2
1= J 4.8
it (@8)

— 11 —



separately. Then these two chains are totally unrelated.

For one chain in the large J limit, the Bethe roots may distribute in two different
ways, as discussed in [R9. For the circular string, the Bethe roots distribute along the
imaginary axis. It is natural to expect that for the circular string in this paper, the Bethe
roots distribution follow the same way. Then use the results in [R9], we get that in the
large N and large J limit, the anomalous dimension of this operator:

_47?2/\2
==

gl (4.9)

So the dimension of this operator obtained from the field theory side at the weak coupling is:

472 )\2
_|_

A =27
T

)\2
= 1+ — 4+ . 4.1
J1< +4J12+ > ( 0)

Comparing this result with the string energy (B.27), we find that at large .J limit, the energy
is proportional to J; at the leading order and the first order correction is always 1/JZ.
However, on string side the first order contribution is linear in ), while on the field theory
side, it is quadratic in \. This is very similar to what happens in the point-like string case,
where the string and field theory result on fluctuation spectrum has a mismatch of factor A.

The foJlded string case is more impressive. Let us just consider the dual operators
Tr((A1B1)2 772 (A3By) 2 ~72), which belong to the decoupled subsector. For a single sub-
sector, the operator looks like the same one corresponding to the IIB folded string in
AdSs x S° with two angular momenta, namely the operators of the form TrZ/1®72 + ...,
In IIB case, the match between the string and the field theory result is in a highly non-
trivial way [B0]. Without getting into details, we can show that our folded string is also
in good match with the field theory result, up to an interpolating functin of the 't Hooft
coupling constant. Notice that the relation (B.43) is the same as the relation (2.2) in [B(],
after identifying the angular momenta properly. And since we have the similar integrable
structure, the discussion in [B0] could be applied to our case straightforwardly.? In this
way, we show that for the folded string, we have very good first leading order match in
AdS,/CFTs correspondence.

For other circular string and folded string, the study of the dual operators is quite
similar. the dual operators should belong to the decoupled SU(2) x SU(2) subsector. And
the relation between energy and the angular momenta in these cases is consisent with this
statement.

5. Conclusion

In this paper, we studied the semi-classical string configurations in AdS; x CP? and their
possible field theory dual. We constructed point-like, circular, folded and pulsating strings

3The only difference is that now the first non-trivial correction in the field theory appears at the order
of A%, so an interpolating fuction of A is needed here. See also our discussions in the next section.
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in CP? and calculate their energy and angular momenta. For the circular strings and
one class of folded string configurations, we figured out their field theory dual operators.
For one class of circular string, the dual operators fall into the SU(2) x SU(2) subsector
of an integrable SU(4) spin chain. In this subsector, the fact that the two spin chains
decouple allow us to calculate the eigenvalues of ADM from Bethe equations. On the field
side, the ADM get correction only at two-loop order, which is proportional to A\2. This
suggest that in the large angular momentum limit, an effective expansion parameter could
be A?/J%. On the other hand, from the string calculation, we learn that the first order
correction is linear in the expansion parameter \/J2. As suggested in [§—[L{], there should
exist a interpolating function f(A) which approaches A at weak coupling and VA at strong
coupling. Combining the result we found in this paper, we suggest that in the study of the
spinning strings, the effective expansion parameter is f2(\)/J2. The nontrivial functional
match in the first leading order in the folded string case gives very strong support to this
suggestion.
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